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Abstract
The exclusion statistics of two complementary sets of quasiparticles, generated
from opposite ends of the spectrum, are identified for Ising chains with spin
s = 1/2, 1. In the s = 1/2 case the two sets are antiferromagnetic domain
walls (solitons) and ferromagnetic domains (strings). In the s = 1 case they
are soliton pairs and nested strings, respectively. The Ising model is equivalent
to a system of two species of solitons for s = 1/2 and to a system of six
species of soliton pairs for s = 1. Solitons exist on single bonds but soliton
pairs may be spread across many bonds. The thermodynamics of a system of
domains spanning up to M lattice sites is amenable to exact analysis and shown
to become equivalent, in the limit M → ∞, to the thermodynamics of the
s = 1/2 Ising chain. A relation is presented between the solitons in the Ising
limit and the spinons in the XX limit of the s = 1/2 XXZ chain.

PACS number: 75.10.−b

1. Introduction

Ising chains are among the simplest systems of interacting degrees of freedom and have been
thoroughly studied in a wide variety of circumstances including the presence of transverse
fields, time-dependent fields, inhomogeneities in field or coupling etc. Is there anything
of substance left that we can still learn from the Ising model in one dimension [1] with
homogeneous coupling? This paper presents a case (by no means the only one [2, 3]) for an
affirmative answer.

The Hamiltonian of the spin-s Ising model for s = 1/2, 1, 3/2, . . . on a periodic chain of
N sites reads

Hs =
N∑

n=1

(
JSz

nS
z
n+1 + hSz

n

)
, Sz

n = s, s − 1, . . . ,−s, (1.1)

where the exchange coupling is antiferromagnetic (ferromagnetic) for J > 0 (J < 0) and h is
a magnetic field. This model system has simple product eigenstates, a dispersionless spectrum

1751-8113/08/265003+18$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/26/265003
http://stacks.iop.org/JPhysA/41/265003


J. Phys. A: Math. Theor. 41 (2008) 265003 P Lu et al

and no intrinsic dynamics to speak of. Its thermodynamics, derived via transfer matrix [4, 5],
is predictably simple.

One interesting aspect ofHs that promises usefulness in a wider context is the quasiparticle
composition of the product eigenstates as will be demonstrated. The entire spectrum of Hs can
be systematically generated from opposite ends by different sets of quasiparticles with exotic
exclusion statistics. The nature of these quasiparticles strongly varies with s but a systematics
in their make-up is recognizable.

In H1/2 we consider antiferromagnetic domain walls (solitons with spin ±1/2 and
fractional exclusion statistics) for J > 0 or with ferromagnetic domains (strings of flipped
spins with integer-valued exclusion statistics) for J < 0. The corresponding quasiparticles in
H1 turn out to be soliton pairs with spin 0,±1 (for J > 0) and nested strings (for J < 0),
both with unusual exclusion statistics.

We use the concept of statistically interacting quasiparticles to show that the
thermodynamics of Hs is equivalent to that of a gas of solitons (for s = 1/2) or soliton
pairs (for s = 1). The same framework is shown to work also for the thermodynamics of
string particles. It is expected that these particles, whose detailed exclusion statistics is worked
out here, are still relevant in integrable spin chain models away from their Ising limit. The
particles identified here then become objects of a coordinate Bethe ansatz [6–8] applied to
those models.

We first review the concept of statistical interaction and its use in thermodynamics
(section 2). Then we introduce the soliton particles for H1/2, describe their exclusion statistics
and determine the thermodynamics in a magnetic field from a soliton perspective (section 3).
Next we introduce the six species of soliton-pair particles that govern the spectrum of H1

and work out their thermodynamics in a zero magnetic field (section 4). Then we present the
combinatorics for the statistical interaction of a system of strings in H1/2 and of nested strings
in H1. We proceed by calculating the thermodynamics of a system of strings of restricted size
and recover the Ising thermodynamics when that restriction is lifted (section 5). Finally, we
assess the progress reported here and discuss possible extensions and comparisons (section 6)
including a relation between solitons and spinons, both with semionic statistics (appendix A).

2. Statistical interaction

Quasiparticles in solid matter are not restricted to be either bosons or fermions. In integrable
quantum many-body model systems [6–8] quasiparticles with infinite lifetimes and unusual
exclusion statistics have indeed been identified. The generalized Pauli principle as introduced
by Haldane [9] expresses how the number of states available to one particle is affected by the
presence of other particles:

�di
.= −

∑
j

gij�Nj . (2.1)

The indices i, j refer to distinct particle species. gij are statistical interaction coefficients. For
bosons we have gij = 0 and for fermions gij = δij . Upon integration equation (2.1) becomes

di = Ai −
∑

j

gij (Nj − δij ), (2.2)

where Ai are statistical capacity constants. The number of many-body states containing {Ni}
particles of the various species is then determined by the multiplicity expression

W({Ni}) =
∏

i

(
di + Ni − 1

Ni

)
. (2.3)
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Table 1. Distinct bonds in H1/2, their soliton content, and their contribution to the energy of the
product eigenstate (relative to the soliton vacuum).

Bond ↑↑ ↓↓ ↑↓ ↓↑
N+ 1 0 0 0
N− 0 1 0 0

�E J+h
2

J−h
2 0 0

We shall determine the ingredients Ai, gij to (2.2) for two species of solitons or N species of
strings, all pertaining to H1/2, and for six species of soliton pairs or N(N + 1)/2 species of
nested strings pertaining to H1.

The thermodynamic properties of a macroscopic system of statistically interacting
particles are amenable to a rigorous analysis as shown by Wu [10]. For given sets of one-
particle energies εi , statistical interaction coefficients gij and statistical capacity constants Ai ,
the grand partition function is

Z =
∏

i

[
1 + wi

wi

]Ai

, (2.4)

where the quantities wi are determined by the nonlinear algebraic equations

εi − µ

kBT
= ln(1 + wi) −

∑
j

gji ln

(
1 + wj

wj

)
. (2.5)

The temperature T and the chemical potential µ are the control variables. Additional control
variables such as external fields may come into play as part of the energies εi . The average
numbers of particles, 〈Ni〉, of each species are related to the wi by the linear equations

wi〈Ni〉 +
∑

j

gij 〈Nj 〉 = Ai. (2.6)

We shall apply this method of exact analysis to the solitons and the strings in the context of
H1/2 and to soliton pairs in the context of H1.

3. Solitons

Here we consider H1/2 with J > 0 and h > 0 for even or odd N. The task at hand has a
combinatorial part and a statistical mechanical part. We first relate the Ising spectrum to
soliton configurations, then we undertake a thermodynamic analysis of the soliton system
using the methodology outlined in section 2.

3.1. Combinatorics of solitons

Among the four distinct bonds in the general product state |σ1σ2 · · · σN 〉 (see table 1), the
bonds ↑↑,↓↓ represent solitons with spin +1/2,−1/2, respectively, and ↑↓,↓↑ are vacuum
bonds. Close-packed solitons with like spin orientation reside on successive bonds (e.g. ↑↑↑),
whereas close-packed solitons with opposite spin orientation are separated by one vacuum
bond (e.g. ↑↑↓↓). More generally, the number of vacuum bonds between nearest-neighbor
solitons with like (opposite) spin orientation is even (odd). Solitons only interact statistically.
The energy of a soliton is unaffected by the presence of other solitons.

The two soliton vacuum states, | ↑↓ · · · ↑↓〉 and | ↓↑ · · · ↓↑〉, represent the lowest
energy level for even N. The lowest level for odd N is 2N -fold degenerate and contains one

3
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Table 2. Number of states, WA(N+, N−), with NA = N+ + N− solitons and magnetization
Mz = (N+ − N−) /2 for H1/2 with N = 6 (left) and N = 7 (right).

Mz\NA 0 2 4 6 Mz\NA 1 3 5 7

3 – – – 1 1 7/2 – – – 1 1
2 – – 6 – 6 5/2 – – 7 – 7
1 – 9 6 – 15 3/2 – 14 7 – 21
0 2 12 6 – 20 1/2 7 21 7 – 35

−1 – 9 6 – 15 −1/2 7 21 7 – 35
−2 – – 6 – 6 −3/2 – 14 7 – 21
−3 – – – 1 1 −5/2 – – 7 – 7

2 30 30 2 64
−7/2 – – – 1 1

14 70 42 2 128

soliton. The soliton content of an Ising eigenstate is specified either by the numbers N± of
spin-up/down solitons or, alternatively, by the total number of solitons and the magnetisation:

NA = N+ + N−, Mz = 1
2 (N+ − N−). (3.1)

The energy level of all states with NA solitons and magnetization Mz is

E(NA,Mz) − E0 = 1
2NAJ + hMz, (3.2)

where E0 = −NJ/4 is the energy of the soliton vacuum.
How many Ising eigenstates exist for given N+ and N− (or NA and Mz)? The answer to this

question is found in a two-step process consisting of (i) the identification of the independent
quasiparticles in relation to the constituent solitons and (ii) the exact combinatorial analysis
of the quasiparticles thus identified. The result is the multiplicity expression

WA(N+, N−) = 2N

N − NA

∏
σ=±

(
dσ + Nσ − 1

Nσ

)
, (3.3)

dσ = 1

2
(N − 1) − 1

2

∑
σ ′

(Nσ ′ − δσσ ′). (3.4)

It is compatible with the standard form (2.3) except for the prefactor, which, however, has no
bearing on the statistical mechanical analysis. The range of NA is 0, 2, . . . , N for even N and
1, 3, . . . , N for odd N. NA = N is only realized for the two states with N+ = NA or N− = NA.
Tabulated data such as shown in table 2 have proven to be useful in step (i), namely for testing
the compatibility of independent-particle candidates with (2.3). In the case at hand (H1/2) the
independent quasiparticles are identical to the solitons themselves. We shall see in section 4.1
that for H1 the independent quasiparticles are soliton pairs.

3.2. Statistical mechanics of solitons

For the statistical mechanical analysis of H1/2 as a soliton gas we use the statistical capacity
constants Aσ = (N − 1)/2 and the statistical interaction coefficients gσσ ′ = 1/2 extracted
from equation (3.4), and the soliton energies εσ = (J + σh)/2 from table 1. We have to solve
two coupled nonlinear algebraic equations of the type (2.5):

J ± h

2kBT
= ln(1 + w±) +

1

2
ln

w±
1 + w±

+
1

2
ln

w∓
1 + w∓

. (3.5)
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Figure 1. Average number 〈N+〉/N of spin-up solitons per lattice bond versus J/kBT for several
values of magnetic field.

The solution,

w± = 1
2

[
e±h/kBT − 1 +

√
(e±h/kBT − 1)2 + 4 e(J±h)/kBT

]
, (3.6)

determines the grand partition function via (2.4) with the asymptotic value A± � N/2 for the
capacity constants. The result,

Z = [
e2K

(
cosh H +

√
sinh2 H + e−4K

)]N
, K

.= − J

4kBT
, H

.= − h

2kBT
, (3.7)

is in exact agreement with the well-known canonical partition function ZN obtained via the
transfer matrix [4]. In the relation Z = ZNeNK , the factor eNK accounts for the relative shift
in the energy scales used in the two methods.

For the average numbers of solitons, 〈N±〉, we infer from (2.6) the two coupled linear
equations, (

w± +
1

2

)
〈N±〉 +

1

2
〈N∓〉 = N

2
, (3.8)

which have the solutions

〈N±〉 = N

2

e±H
[√

sinh2 H + e−4K ± sinh H
]

sinh2 H + e−4K + cosh H
√

sinh2 H + e−4K

h→0−→ N/2

e−2K + 1
. (3.9)

The dependence of 〈N+〉/N on J/kBT is shown in figure 1 for various values of h/J .
All curves start from 〈N+〉/N = 1/4 in the high-T limit. For h = 0 we have 〈N+〉 = 〈N−〉;
this curve has a monotonically decreasing trend toward zero as T → 0. For h > 0 (h < 0) the
average number 〈N+〉 of solitons with spin directed antiparallel (parallel) to h is more (less)
rapidly suppressed as T → 0. For sufficiently weak, negative fields, 0 > h/J > −0.25,
the curve is still monotonically decreasing. For −0.25 > h/J > −1, it acquires a smooth
maximum at finite, nonzero T. For h/J < −1 the curve is monotonically increasing toward
〈N+〉/N = 1. Here the ground state contains N spin-polarized solitons.

5



J. Phys. A: Math. Theor. 41 (2008) 265003 P Lu et al

Table 3. Distinct bonds in H1, their soliton content, and their contribution to the energy of a
product eigenstate (relative to the soliton vacuum).

Bond ↑↑ ◦◦ ↓↓ ↑ ◦ ◦ ↑ ↓ ◦ ◦ ↓ ↑↓ ↓↑
N+ 2 1 0 1 1 0 0 0 0
N− 0 1 2 0 0 1 1 0 0

�E/J 2 1 2 1 1 1 1 0 0

Table 4. Number of states, WA(N+, N−), with NA = N+ + N− solitons and magnetization
Mz = (N+ − N−) /2 for H1 with N = 3 (left) and N = 4 (right).

Mz\NA 0 2 4 6 Mz\NA 0 2 4 6 8

3 – – – 1 1 4 – – – – 1 1
2 – – 3 – 3 3 – – – 4 – 4
1 – 3 3 – 6 2 – – 6 4 – 10
0 – 6 – 1 7 1 – 4 8 4 – 16

−1 – 3 3 – 6 0 2 – 16 – 1 19
−2 – – 3 – 3 −1 – 4 8 4 – 16
−3 – – – 1 1 −2 – – 6 4 – 10

0 12 12 3 27
−3 – – – 4 – 4
−4 – – – – 1 1

2 8 48 20 3 81

4. Soliton pairs

Here we consider H1 with J > 0 and h = 0 for even or odd N. The generalization to h �= 0 is
straightforward conceptually. The independent particles are now soliton pairs.

4.1. Combinatorics of soliton pairs

The nine different kinds of bonds are listed in table 3. Each bond can accommodate up to two
solitons. The energy of a soliton is not the same in all configurations.

Our search for the independent particles again starts from tabulated data for WA(N+, N−)

such as sampled in table 4. Two observations suggest that the independent particles are soliton
pairs: the number of solitons is always even. Also, the number of states with N− = 0 grows
∝ NN+/2 for N+  N as opposed to the growth ∝ NN+ observed in H1/2.

From the systematic examination of soliton-pair configurations we conclude that there
exist six distinct species of soliton-pair particles, two groups of three species with spin
(+1, 0,−1). In the first group the paired solitons are confined to the same bond. In the second
group the paired solitons are deconfined. They can be on bonds with any number of lattice
sites between them.

Confined-soliton pairs with spin up (named r+) are identified by any element ↑↑ in the
product state. In like manner, confined-soliton pairs with spin zero (down) are named r0 (r−)

and identified by the elements ◦ ◦ (↓↓) in the product state.The deconfined-soliton pairs with
spin up (down) are named q+ (q−) and identified by any element ↑ ◦ · · · ◦ ↑ (↓ ◦ · · · ◦ ↓) in
the product state, where the presence of n = 1, 2, . . . site variables ◦ between two site variables
↑ (↓) indicates the presence of n−1 spin-zero confined-soliton pairs (r0). Deconfined-soliton
pairs with spin zero are named q0 and are identified by elements ↑ ◦ · · · ◦ ↓ or ↓ ◦ · · · ◦ ↑ in
the product state.

6
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Table 5. Specifications of particles in H1: confined-soliton pairs (r+, r−), spacer particle (r0),
deconfined-soliton pairs (q+, q0, q−); motif in product state; soliton content; index m used in (4.1);
statistical capacity constants Am; energies εm.

Particle r+ r− r0 q+ q− q0

Motif ↑↑ ↓↓ ◦◦ ↑ ◦ ↑ ↓ ◦ ↓ ↑ ◦ ↓, ↓ ◦ ↑
N+ + N− 2 + 0 0 + 2 1 + 1 2 + 0 0 + 2 1 + 1

m 1 2 3 4 5 6
Am

N−1
2

N−1
2 0 N

2 − 1 N
2 − 1 N − 2

εm 2J 2J J 2J 2J 2J

Table 6. Statistical interaction coefficients gmm′ between soliton-pair particles as identified in
table 5.
gmm′ 1 2 3 4 5 6

1 1
2

1
2

1
2 0 1 1

2

2 1
2

1
2

1
2 1 0 1

2

3 0 0 0 −1 −1 −1
4 1

2
1
2

1
2 1 1 1

2

5 1
2

1
2

1
2 1 1 1

2

6 1 1 1 2 2 2

A list of names, motifs and soliton content for all six species of soliton-pair particles is
shown in the top three rows of table 5. In some instances two close-packed particles share
one lattice site (e.g. ◦ ◦ ◦,↑ ◦ ↑↑,↑ ◦ ↓ ◦ ↓), in other instances, there is one vacuum bond in
between (e.g. ↑↑↓↓,↑ ◦ ↑↓ ◦ ↑). The particle r0 can only exist inside one of the particles
q+, q0, q−. The former is instrumental to the soliton deconfinement in the latter.

The six particles are thus naturally classified into three groups, the confined-soliton pairs
r+, r−, the deconfined-soliton pairs q+, q0, q− and the spacer particle r0 (deconfinement agent).
In a vague QCD analogy of admittedly limited scope, solitons play the role of quarks, the
soliton pairs r+, r−, q+, q0, q− the role of mesons and baryons, and the spacer particle r0 the
role of gluon with opposite action.

The exact combinatorial analysis of the independent soliton-pair particles identified in
table 5 produces the multiplicity expression

W6({Xm}) = 2N

N − N�

6∏
m=1

(
dm + Xm − 1

Xm

)
, (4.1)

dm = Am −
∑
m′

gmm′(Xm′ − δmm′), (4.2)

N� = X1 + X2 + X3 + 2(X4 + X5 + X6) � N, (4.3)

for product eigenstates containing Xm soliton pairs of species m = 1, . . . , 6, where the index
m is defined in table 5. The statistical capacity constants Am and the particle energies εm are
given in table 5, and the statistical interaction coefficients gmm′ in table 6. Again there exist
restrictions and exceptions regarding the allowed configurations {Xm}. We do not list them
here because they have no bearing on the statistical mechanical analysis. The only model
specifications needed are the quantities Am, εm, gmm′ .

7



J. Phys. A: Math. Theor. 41 (2008) 265003 P Lu et al

Note that gmm′ include some zeros and some negative values. To make sense of these
peculiarities we rewrite each of the six binomial factors of (4.1) in the form(

Bm + (1 − gmm)Xm − Ym

Xm

)
, (4.4)

where

Bm
.= Am + gmm, Ym

.=
∑
m′ �=m

gmm′Xm′ + 1. (4.5)

The maximum capacity for the particles of species m,

Xmax
m = Bm − Ym

gmm

. (4.6)

is thus primarily dictated by the diagonal coefficient gmm, but is also influenced by the off-
diagonal coefficients gmm′ via Ym.

If one of the off-diagonal coefficients is zero, gmm′ = 0 for m′ �= m, this merely means
that the presence of the particles of species m′ has no effect on the capacity for the particles
of species m. If one of the diagonal coefficients vanishes, gmm = 0, then (4.4) does no longer
limit the capacity for the particles of species m. This can either mean that there is no limit (as
is the case for bosons) or it can mean (as is the case here for m = 3) that a limit is implied by
a different rule associated with (4.1).

The existence of negative off-diagonal coefficients gmm′ as found in table 6 for m = 3 and
m′ = 4, 5, 6 has the consequence that the particles from species m′ contribute negatively to
Ym. Adding the particles of species m′ increases the capacity of the system for the particles of
species m. This is indeed to be expected because the latter can only exist inside the former. In
this instance, the exclusion principle (2.1) turns into what might be called an accommodation
principle.

4.2. Statistical mechanics of soliton pairs

Carrying out the statistical mechanical analysis of H1 as a gas of soliton pairs starts with
solving the six coupled nonlinear equations of type (2.5) with µ = 0, the εm from table 5 and
the gmm′ from table 6. Symmetry implies w1 = w2, w4 = w5. The remaining four equations
in exponentiated form (with K

.= −J/kBT ),

e−2K = w1w4w6

(1 + w4)(1 + w6)
, e−K = (1 + w3)w1w4w6

(1 + w1)(1 + w4)(1 + w6)
, (4.7)

e−2K = w1(1 + w3)w
2
4w

2
6

(1 + w1)w3(1 + w4)(1 + w6)2
, e−2K = w1(1 + w3)w4w

2
6

(1 + w1)w3(1 + w4)(1 + w6)
, (4.8)

can be simplified into
1 + w3

1 + w1
= eK,

w3

w6
= eK, w4 = 1 + w6,

2 + w6

w1w6
= e2K, (4.9)

and reduced to a quadratic equation for w3 with the (physically significant) solution

w3 = cosh K − 1

2
+

√(
cosh K − 1

2

)2

+ 2. (4.10)

The grand partition function (2.4) with the (asymptotic) Am from table 5 and the solutions
(4.9), (4.10) becomes

Z =
[
(1 + w1)

2

w2
1

(1 + w4)
2

w2
4

(1 + w6)
2

w2
6

]N/2

= [(1 + w3) eK ]N = ZNeKN, (4.11)

8
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Figure 2. Average numbers 〈Nm〉/N of soliton-pair particles (per site) versus inverse temperature
J/kBT of H1.

in agreement with the transfer-matrix result for the canonical partition function ZN [5], where
the factor eKN again originates from a shift in energy scale.

For the average numbers of soliton pairs, 〈Nm〉, we must solve six linear equations of
the type (2.6) with the wm from (4.9), (4.10). Symmetry dictates that 〈N1〉 = 〈N2〉 and
〈N4〉 = 〈N5〉. The solution reads

〈N1〉 = 〈N2〉 = N

2

w3
(
w2

3 + 2eK
)

(w3 + 1)
(
w2

3e−K + 4w3 + 2 − 2eK
) , (4.12)

〈N3〉 = N
2(w3 + 1 − eK)

(w3 + 1)
(
w2

3e−K + 4w3 + 2 − 2eK
) , (4.13)

〈N4〉 = 〈N5〉 = 1

4
w3〈N3〉, 〈N6〉 = 1

2
w3〈N3〉. (4.14)

The relation 〈N6〉 = 2〈N4〉 = 2〈N5〉 may be anticipated on the basis of the motif shown in
table 5. The reduced averages 〈Nm〉/N are plotted versus J/kBT in figure 2.

Increasing the temperature from T = 0 results in a gradual increase of average particle
numbers from all species. Note that the spacer particles r0 (m = 3), which can only exist
inside particles of species q+, q0, q− (m = 4, 5, 6) are the slowest to appear in significant
numbers as would be expected.

For the generalization of these results to h �= 0 we must add the Zeeman contribution
to the energies εm listed in table 5. The statistical mechanical analysis of soliton pairs as
demonstrated here is by no means limited to the Ising Hamiltonian (1.1). We can freeze out
some of the particle species by making their activation energies infinitely large, εm → ∞. This
has the consequence that wm → 0 and 〈Nm〉 → 0. For the remaining active particles we can
assign arbitrary values εm for their energies. For example, if we freeze out all particles except
those of species m = 1, 2 then the results of section 3 for H1/2 are, effectively, recovered.

Among the issues that must be heeded in generalizations of the calculations reported here
to models with arbitrary particle energies are the following: (i) the particle r0 can only exist

9
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inside a particle q0, q+, or q−. Therefore freezing out the latter three will freeze out the former
even if its energy remains finite. (ii) The particle q0 comes in two parity-violating versions.
In the context of H1 or other models where the two configurations ↑ ◦ ↓ and ↓ ◦ ↑ have
the same energy, they can be treated as identical particles. However, in situations where the
two configurations have to be assigned different energies we must treat them as belonging to
different species and determine their statistical interaction with each other and with all the
other particle species. (iii) A spin interaction beyond nearest neighbors added to H1 will, in
general, produce a coupling between the particles listed in table 5.

5. Domains and nested domains

Here we consider Hs for s = 1/2, 1, J < 0, and h � 0. In the following we describe how the
entire spectrum is systematically generated from the ferromagnetic ground state |↑↑ · · · ↑〉 by
domains (s = 1/2) or nested domains (s = 1) of flipped spins. These domains are independent
particles subject to a statistical interaction. The thermodynamic analysis of domains is then
carried out for the s = 1/2 case at h = 0.

5.1. Combinatorics of domains

In the notation used here, {|σ1 · · · σN 〉}rm represents the set of m product vectors with r flipped
spins that are generated from |σ1 · · · σN 〉 via translations. The 2N = 16 states for N = 4 in
this representation are

{|↑↑↑↑〉}0
1, {|↑↑↑↓〉}1

4, {|↑↑↓↓〉}2
4,

{|↑↓↑↓〉}2
2, {|↑↓↓↓〉}3

4, {|↓↓↓↓〉}4
1. (5.1)

The first among them is the (non-degenerate) ground state of H1/2 with J < 0 and h < 0.
Domains are strings of µ consecutive down-spins. In (5.1) the states in the second set contain
one one-string, and the state in the fourth set two one-strings. The states in the third, fifth,
and sixth set contain one string with µ = 2, 3, 4, respectively. Each string of length µ

contributes the amount J + µh to the energy of the state. An Ising chain of length N can
thus accommodate strings with µ = 1, . . . , N − 1, which are treated here as distinct species
of independent particles. The lone state containing one string with µ = N is exceptional in
several respects, ignorable in macroscopic systems.

What is the number of product eigenstates that contain a configuration {Nµ} of strings?
Since there must be at least one up-spin between successive strings, only those configurations
can be realized which satisfy the constraint

N−1∑
µ=1

(µ + 1)Nµ � N. (5.2)

By combinatorial analysis we found that the number of states with the given string configuration
is determined by the multiplicity expression

W({Nµ}) = N

N − r

N−1∏
µ=1

(
dµ + Nµ − 1

Nµ

)
, (5.3)

dµ = N − µ −
N−1∑
µ′=1

gµµ′(Nµ′ − δµµ′), (5.4)

10
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Table 7. The nested string interpretation of the product eigenstates for N = 4 in H1. The 2N

states on the left represent the outer shell of the nesting. Each µ-string is underlined and serves as
the vacuum for ν-strings on the inner shell. From each of the 2N effective H1/2 product states on
the left are thus generated one or several H1 product states on the right for a total of 3N .

1 {|↑↑↑↑〉}+4
1 {|↑↑↑↑〉}+4

1×1, 1
4 {|↑↑↑ ◦〉}+3

4 {|↑↑↑ ◦〉}+3
4×1, {|↑↑↑↓〉}+2

4×1, 8
4 {|↑↑ ◦◦〉}+2

4 {|↑↑ ◦◦〉}+2
4×1, {|↑↑↓ ◦〉}+1

4×2, {|↑↑↓↓〉}0
4×1, 16

4 {|↑ ◦ ◦ ◦〉}+1
4 {|↑ ◦ ◦ ◦〉}+1

4×1, {|↑↓ ◦◦〉}0
4×3, {|↑↓↓ ◦〉}−1

4×3, {|↑↓↓↓〉}−2
4×1 32

1 {|◦ ◦ ◦◦〉}0
1 {| ◦ ◦ ◦ ◦〉}0

1×1, {|↓ ◦ ◦ ◦〉}−1
1×4

{|↓↓ ◦◦〉}−2
1×4, {|↓ ◦ ↓ ◦〉}−2

1×2, {|↓↓↓ ◦〉}−3
1×4, {|↓↓↓↓〉}−4

1×1, 16
2 {|↑ ◦ ↑ ◦〉}+2

2 {|↑ ◦ ↑ ◦〉}+2
2×1, {|↑↓↑ ◦〉}+1

4×1, {|↑↓↑↓〉}0
2×1, 8

16 81

where

gµµ′ =
{
µ′, µ < µ′,
µ′ + 1, µ � µ′,

r
.=

N−1∑
µ=1

µNµ. (5.5)

5.2. Combinatorics of nested domains

The concept of nested quasiparticles in lattice models is well-known in the context of the
Bethe ansatz as applied, for example, to the Hubbard model or to integrable spin-1 models
[8, 11–16]. The nested particles in Ising product states have a particularly simple structure.

In the context of H1 the nesting involves two shells. The particles on the outer shell
(µ-strings) are structurally identical to the strings of H1/2. We start from the µ-string vacuum,
{|↑↑ · · · ↑〉}0

1, and generate a total of 2N product states composed of site variables ↑ and
◦. On the inner shell we take any µ-string of the outer shell and use it as the vacuum for
ν-strings. Hence a ν-string is a sequence of ν successive ↓-sites embedded in a region of
µ ◦-sites between consecutive ↑-sites. Naturally, we must have ν � µ. This prescription
is illustrated in table 7 for N = 4. The two-shell nesting of string particles leads to the
multiplicity expression

W
({Nµ}, {N(µ)

ν

}) = N

N − r

∏
µ

(
dµ + Nµ − 1

Nµ

)
µ

µ − rµ

∏
ν

(
d(µ)

ν + N(µ)
ν − 1

N(µ)
ν

)
(5.6)

with dµ from (5.4), gµµ′, r from (5.5), and

d(µ)
ν = µ − ν −

∑
ν ′

gνν ′
(
N

(µ)

ν ′ − δνν ′
)
, rµ =

∑
ν

νN(µ)
ν . (5.7)

As in previous applications, there are instances (ignorable for macroscopic systems) where
expression (5.6) is inapplicable.

5.3. Statistical mechanics of domains

Returning to H1/2 with J < 0 and setting h = 0, we now derive the exact thermodynamics of
a system of strings via the method outlined in section 2. It is evident from Wu’s derivation [10]
of equations (2.5) that their applicability in the present context is limited to situations where
the system has a large capacity for strings of all sizes that are permitted. To circumnavigate

11
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this restriction we introduce a limit on the length of allowed strings, µ � M  N . The
thermodynamic limit of H1/2 requires that we set N → ∞ before setting M → ∞.

With the specifications regarding statistical interaction of strings from section 5.1 we
write for the grand potential the expression

�M(K) = −kBT

M∑
µ=1

Aµ ln

(
wµ + 1

wµ

)
, Aµ = N − µ, (5.8)

where wµ satisfy

4K = ln(wµ + 1) −
M∑

µ′=1

gµ′µ ln
wµ′ + 1

wµ′
, K = |J |

4kBT
. (5.9)

The transformation of variable, ξµ
.= ln(wµ + 1), turns equations (5.8) and (5.9) into

�M(K) = |J |
4K

M∑
µ=1

(N − µ) ln(1 − e−ξµ), (5.10)

ξµ = 4K − µ

M∑
µ′=1

ln(1 − e−ξµ′ ) −
M∑

µ′=µ

ln(1 − e−ξµ′ ). (5.11)

Introducing the quantity

	µ
.= − 1

4K

µ∑
µ′=1

ln(1 − e−ξµ′ ) (5.12)

we rewrite (5.11) in the form

ξµ = 4K[1 + (µ + 1)	M − 	µ−1]. (5.13)

This sets the stage for determining 	M via a recursive scheme:

	1 = − 1

4K
ln(1 − q1+2	M ), q

.= e−4K, (5.14)

	2 = 	1 − 1

4K
ln(1 − exp(−4K(1 + 3	M) − ln(1 − q1+2	M ))), (5.15)

leading to

	µ = − 1

4K
ln

(
1 − q1+2	M

1 − qµ	M

1 − q	M

)
. (5.16)

Setting µ = M we arrive at a polynomial equation for q	M :

qq(M+2)	M + (1 − q)q2	M − 2q	M + 1 = 0. (5.17)

The solution of (5.17) substituted into (5.10) via (5.16) and (5.13) determines the grand
potential of a system of strings with maximum length M in a chain of N sites with M  N .
Taking the limit N → ∞ while keeping M finite we have

ωM(K)
.= lim

N→∞
1

N
�M(K) = |J |

4K

M∑
µ=1

ln(1 − e−ξµ) = −|J |	M. (5.18)

If we now take the limit M → ∞, the first term in equation (5.17) vanishes and the solution,

q	∞ = (1 +
√

q)−1, (5.19)

12
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Figure 3. Entropy per site for N → ∞ versus reduced temperature of a system of domains with
maximum length M. The case M = ∞ represents H1/2.

substituted into (5.18), yields

ω∞(K) = − |J |
4K

ln(1 + e−2K), (5.20)

which is indeed the exact result for H1/2 with h = 0, J < 0 and the string vacuum at the origin
of the energy scale.

The statistical mechanics of a system of domains with maximum length M on a lattice of N
sites is thus reduced to the problem of solving a polynomial equation of degree M+1. Consider
the entropy per site of strings with µ � M on an infinite lattice, sM(K)

.= limN→∞ SM(K)/N ,
inferred from (5.18). Compact analytic solutions are readily calculated for M = 1 (one-strings
only) and M = ∞ (all strings allowed):

s1(K)

kB

= ln

(√
1 + 4 e−4K + 1

2

)
+

8Ke−4K

1 + 4e−4K +
√

1 + 4e−4K
, (5.21)

s∞(K)

kB

= ln(1 + e−2K) +
2K

e2K + 1
. (5.22)

Entropy curves for several M are shown in figure 3. As we relax the restriction on the
length of permissible domains, the entropy at any given nonzero temperature becomes larger.
The relative contribution of longer domains is larger at low T than at high T. All domains have
the same energy. With T increasing, the longer domains tend to be crowded out by the shorter
ones. As the restriction on length is lifted altogether, the Ising result (M = ∞) is approached
from below.

The same type of analysis is applicable to any model with spin-1/2 Ising product
eigenstates and with arbitrary energy values εm, µ = 1, 2, . . . ,M assigned to the domains.
The left-hand side of equation (5.9) must then be replaced by 4Kµ,Kµ = εµ/4kBT . For H1/2

at h �= 0 we must use εµ = J + µh.

13
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5.4. Distribution of domains

What is the relative frequency of occurrence of domains of size µ for given maximum size
M at temperature T in an infinite chain? To answer this question we adapt Wu’s linear
equations (2.6) to the situation at hand:

wµ〈nµ〉 +
M∑

µ′=1

µ′〈nµ′ 〉 +
µ∑

µ′=1

〈nµ′ 〉 = 1, µ = 1, . . . , M, (5.23)

where nµ
.= Nµ/N and where we have ignored a contribution of O(µ/N) to the right-hand side

by effectively taking the limit N → ∞, while keeping M finite. The quantities wµ = eξµ − 1
are known from the solution of (5.17) via (5.16) and (5.13).

Here we carry out the calculation for the case M → ∞. The solution (5.19) substituted
into (5.16) yields

q	µ = 1

1 +
√

q

(
1 +

√
q

(1 +
√

q)µ

)
(M = ∞), (5.24)

which, upon substitution in (5.13), produces the wµ needed in (5.23):

wµ = 1√
q

+
(1 +

√
q)µ

q
(M = ∞). (5.25)

Now we rewrite equations (5.23) in the form

wµ〈nµ〉 +
µ∑

ν=1

〈nν〉 = ζ, µ = 1, 2, . . . (5.26)

where the quantity

ζ
.= 1 −

∞∑
ν=1

ν〈nν〉 (5.27)

can be treated as a constant to be determined self-consistently at the end. The solution of
equations (5.26), obtained by induction, is

〈nµ〉 = Pµ

wµ

(
1 +

∞∑
ν=1

ν

wν

Pν

)−1

, Pµ
.=

µ∏
ν=1

wν

wν + 1
, (5.28)

and after normalization,

〈n̂µ〉 .= 〈nµ〉
( ∞∑

ν=1

〈nν〉
)−1

= Pµ

wµ

( ∞∑
ν=1

Pν

wν

)−1

= Pµ

wµ(1 − P∞)
, (5.29)

From (5.12) and (5.28) we infer that Pµ = q	µ , a quantity evaluated in (5.24). The assembly
of the ingredients (5.24), (5.25) and (5.19) to expression (5.29) produces the following explicit
result for the distribution of lengths µ of string particles in H1/2 at temperature T and a zero
magnetic field:

〈n̂µ〉 =
√

q

(1 +
√

q)µ
= e−2K

(1 + e−2K)µ
, µ = 1, 2, . . . . (5.30)

This is a realization of Pascal’s distribution, P(µ) = γ (1 − γ )µ−1, if we set γ =
e−K/(eK + e−K). This result was previously derived by Denisov and Hänggi [3] using
a very different method in their study of finite Ising chains with open boundaries. This
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distribution indeed favors short strings under the crowded conditions at high T, in agreement
with observations made in our discussion of the entropy curves (figure 3). At low T the
distribution is flat, consistent with the fact that all strings have the same energy. With some
additional effort our solution can be generalized to finite M, and to models with arbitrary
values for the energies εµ of domains of size µ.

6. Conclusion

We have demonstrated that the conceptual framework of statistical interaction between
quasiparticles in many-body systems [9, 10] leads to significant new insights into the statistical
mechanics of Ising chains and related models with spin-1/2 or spin-1 product eigenstates on
a one-dimensional lattice. We have identified, in particular, the nature of complementary sets
of independent particles on the basis of which the spectrum of Ising chains with s = 1/2
and s = 1 can be generated systematically from either the ferro- or antiferromagnetic ground
state.

The Néel state is the vacuum for solitonic particles. In the s = 1/2 case the solitons
themselves are the independent particles. They are antiferromagnetic domain walls, confined
to single bonds, with spin ±1/2 and semionic statistical interaction. In the s = 1 case the
solitons are merely building blocks of particles. All independent particles are soliton pairs.
The paired solitons may be on the same bond or on bonds with any number of lattice units
apart. We have carried out the exact statistical mechanical analysis of solitons (two species)
for s = 1/2 and of soliton pairs (six species) for s = 1.

The state with all spins up is the vacuum for string particles. In the s = 1/2 case the
independent particles are domains of overturned spins and in the s = 1 case they are nested
domains, i.e. domains inside domains of halfway overturned spins. By working out their exact
statistical interaction we have set the stage for the statistical mechanical analysis of domains
and nested domains. We have carried out that analysis for the s = 1/2 case and established
contact with previous work based on different methods [3].

The work presented here opens up numerous opportunities for extensions and comparisons
including the following. (i) The methodology developed in sections 3 and 4 for the
identification and specification of independent solitonic particles looks promising for
applications to Ising chains with s > 1 and to Ising ladders. Preliminary results for H3/2, for
example, indicate that the independent solitonic particles contain at least two and not more
than six solitons. This again includes particles confined to one bond and particles spread across
many bonds with more than one species of spacer particles acting as deconfinement agents. (ii)
A question of considerable interest is how the methodology developed here can be generalized
to situations with Ising interactions beyond nearest neighbors, which, in general, leads to a
coupling between solitonic particles and between string particles. (iii) There exist integrable
spin chain models with a parametric Ising limit. Consequently, the solitonic particles analyzed
here must exist in some variant form away from the Ising limit of those models. One such
link (to the spinons of the s = 1/2 XXZ model) is outlined in appendix A. Corresponding
links are bound to exist between the string and nested string particles of Ising chains and the
string solutions of the Bethe ansatz applied to integrable spin models with s = 1/2 [17–22]
and s = 1 [11–16] near their Ising limits. (iv) The spin-s Ising chain interpreted as a system
of nested string particles as explored in section 5 lends itself to the statistical analysis of codes
or languages, i.e. nested structures of letters, words, sentences etc. Ising chains have already
been used outside the familiar physics applications (magnetism, lattice gases) to models of
statistical genetics [23] and biological evolution [24].
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Appendix. Solitons versus spinons

The ground state of the s = 1/2 XXZ model,

HXXZ =
N∑

n=1

[
J⊥

(
Sx

nSx
n+1 + Sy

nS
y

n+1

)
+ JzS

z
nS

z
n+1

]
, (A.1)

at J⊥, Jz � 0 for even N is non-degenerate except in the Ising limit (J⊥ = 0). The finite-size
gap is of O(N−1) in the planar regime (J⊥ > Jz) and of O(e−N) in the axial regime (J⊥ < Jz).
The lowest energy level in both regimes has been identified as the (unique) vacuum of spinons
[22]. The two lowest levels, again in both regimes, can be identified as the (twofold) vacuum
of solitons.3

Spinons and solitons have similar but not identical semionic exclusion statistics. The
similarities and differences are encoded in the multiplicity expressions. Equations (3.3)–(3.4)
for solitons are to be compared with

WS(N+, N−) =
∏
σ=±

(
dσ + Nσ − 1

Nσ

)
, (A.2)

dσ = 1

2
(N + 1) − 1

2

∑
σ ′

(Nσ ′ − δσσ ′) (A.3)

for spinons [9]. Away from the Ising limit, solitons (and spinons) are dispersive and scatter
off each other elastically. Both kinds of particles are most conveniently identified by their
momentum quantum numbers. Every XXZ eigenstate has a unique spinon composition and
a unique soliton composition. The relation between the spinon composition and the soliton
composition is most transparent in the XX limit (Jz = 0).

In [25], a motif was developed that relates the configuration of (free) Jordan–Wigner
fermions with the configuration of spinons. This motif is reproduced in figure A1 for N = 4
(16 eigenstates) and amended to also show the soliton configuration. The allowed fermion
momenta (in units of π/N ) are

m̄i ∈
{{1, 3, . . . , 2N − 1} for even NF

{0, 2, . . . , 2N − 2} for odd NF

(A.4)

and the allowed spinon orbital momenta (in units of π/N ) are

mi = NS

2
,
NS

2
+ 2, . . . , N − NS

2
, (A.5)

where NF is the number of fermions and NS = N+ + N− the number of spinons in any given
XX eigenstate.

The exact spinon configuration is encoded in the fermion configuration as described in
the following: (i) consider the the gray fork as dividing the fermion momentum space into
two domains, the inside and the outside. The outside domain wraps around at the extremes
(m̄i = N mod N = 0). (ii) Every fermionic hole (open circle) inside represents a spin-up

3 The names attributed to quasiparticles in quantum spin chains vary among authors. Our usage is common but not
universal.
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Figure A1. Fermion configurations of all eigenstates for N = 4 of the XX model (Jz = 0).
Fermionic particles (holes) are denoted by full (open) circles. Spinons with spin up (down) are
denoted by (black or gray) squares around open (full) circles. Solitons with spin up (down) are
denoted by black squares around open (full) circles. The fermion momenta m̄i (in units of π/N )
can be read off the diagram. The spinon orbital momenta mi (also in units of π/N ) and the spinon
spins σi are given explicitly and can be inferred from the fermion configuration as explained in the
text. Also given are the wave number k (in units of 2π/N ) and the energy E (in units of J⊥) of
each eigenstate.

(This figure is in colour only in the electronic version)

spinon (square surrounding open circle) and every fermionic particle (full circle) outside
represents a spin-down spinon (square surrounding full circle). (iii) Any number of adjacent
spinons in the representation of figure A1 are in the same orbital. Two spin-up (spin-down)
spinons that are separated by � consecutive fermionic particles (holes) have quantum numbers
separated by 2�. (iv) The spinon orbital momenta are sorted in increasing order from the
right-hand prong of the gray fork toward the left across the inside domain and toward the right
with wrap-around through the outside domain.

For the determination of the soliton content of any XX eigenstate we must also consider
the black fork in figure A1, which is shifted two units to the left. If there is any spin-up/spin-
down spinon pair as identified by the rules pertaining to the gray fork that does not also satisfy
the same rules with respect to the black fork, then it is omitted from the list of solitons. All
such spinons are identified by gray squares in figure A1. The spinon vacuum is just one of
two soliton vacua, the other soliton vacuum being a two-spinon state. The two soliton vacua
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have wave numbers differing by π . In the Ising limit of the XXZ model they correspond to the
symmetric and antisymmetric combinations of the two product Néel states.
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